

 Navigation

 	
 index

 	bllipparser latest documentation

BLLIP Reranking Parser

[image: https://travis-ci.org/BLLIP/bllip-parser.png?branch=master]
 [https://travis-ci.org/BLLIP/bllip-parser][image: https://badge.fury.io/py/bllipparser.png]
 [https://badge.fury.io/py/bllipparser]Copyright Mark Johnson, Eugene Charniak, 24th November 2005 — August 2006

We request acknowledgement in any publications that make use of this
software and any code derived from this software. Please report the
release date of the software that you are using, as this will enable
others to compare their results to yours.

Overview

BLLIP Parser is a statistical natural language parser including a
generative constituent parser (first-stage) and discriminative
maximum entropy reranker (second-stage). The latest version can
be found on GitHub [https://github.com/BLLIP/bllip-parser]. This
document describes basic usage of the command line interface and
describes how to build and run the reranking parser. There are now
Python [http://pypi.python.org/pypi/bllipparser/] and Java interfaces
as well. The Python interface is described in README-python.rst [https://github.com/BLLIP/bllip-parser/blob/master/README-python.rst].

Compiling the parser

	(optional) For optimal speed, you may want to define $GCCFLAGS
specifically for your machine. However, this step can be safely
skipped as the defaults are usually fine. With csh or tcsh,
try something like:

shell> setenv GCCFLAGS "-march=pentium4 -mfpmath=sse -msse2 -mmmx"

or:

shell> setenv GCCFLAGS "-march=opteron -m64"

	Build the parser with:

shell> make

	Sidenote on compiling on OS X

OS X uses the clang compiler by default which cannot currently
compile the parser. Try setting this environment variable before
building to change the default C++ compiler:

shell> setenv CXX g++

Recent versions of OS X may have additional issues. See issues
19 [http://github.com/BLLIP/bllip-parser/issues/19] and 13 [https://github.com/BLLIP/bllip-parser/issues/13] for more
information.

Obtaining parser models

The GitHub repository includes parsing and reranker models, though
these are mostly around for historical purposes. See BLLIP Parser
models [https://github.com/BLLIP/bllip-parser/blob/master/MODELS.rst]
for information about obtaining newer and more accurate parsing models.

Running the parser

After it has been built, the parser can be run with:

shell> parse.sh <sourcefile.txt>

For example:

shell> parse.sh sample-text/sample-data.txt

The input text must be pre-sentence segmented with each sentence in an
<s> tag:

<s> Sentence 1 </s>
<s> Sentence 2 </s>
...

Note that there needs to be a space before and after the sentence.

The parser distribution currently includes a basic Penn Treebank Wall
Street Journal parsing models which parse.sh will use by default.
The Python interface to the parser includes a mechanism for listing and
downloading additional parsing models (some of which are more accurate,
depending on what you’re parsing).

The script parse-and-fuse.sh demonstrates how to run syntactic
parse fusion. Fusion can also be run via the Python bindings.

The script parse-eval.sh takes a list of treebank files as arguments
and extracts the terminal strings from them, runs the two-stage parser
on those terminal strings and then evaluates the parsing accuracy with
Sparseval. For example, if the Penn Treebank 3 is installed at
/usr/local/data/Penn3/, the following code evaluates the two-stage
parser on section 24:

shell> parse-eval.sh /usr/local/data/Penn3/parsed/mrg/wsj/24/wsj*.mrg

The Makefile will attempt to automatically download and build
Sparseval for you if you run make sparseval.

For more information on Sparseval [http://www.clsp.jhu.edu/vfsrv/ws2005/groups/eventdetect/files/SParseval.tgz]
see this paper [http://www.lrec-conf.org/proceedings/lrec2006/pdf/116_pdf.pdf]:

@inproceedings{roark2006sparseval,
 title={SParseval: Evaluation metrics for parsing speech},
 author={Roark, Brian and Harper, Mary and Charniak, Eugene and
 Dorr, Bonnie and Johnson, Mark and Kahn, Jeremy G and
 Liu, Yang and Ostendorf, Mari and Hale, John and
 Krasnyanskaya, Anna and others},
 booktitle={Proceedings of LREC},
 year={2006}
}

We no longer distribute evalb [http://nlp.cs.nyu.edu/evalb/] with the
parser since it sometimes skips sentences unnecessarily. Sparseval does
not have these issues.

More questions?

There is more information about different components of the
parser spread across README files in this distribution (see
below). BLLIP Parser is
maintained by David McClosky [http://nlp.stanford.edu/~mcclosky].

	Usage help: StackOverflow [http://stackoverflow.com/tags/charniak-parser/info] (use charniak-parser tag)

	Bug reports and feature requests: GitHub issue tracker [http://github.com/BLLIP/bllip-parser/issues]

	Twitter: @bllipparser [https://twitter.com/bllipparser]

Parser details

For details on the running the parser, see first-stage/README.rst [https://github.com/BLLIP/bllip-parser/blob/master/first-stage/README.rst].
For help retraining the parser, see first-stage/TRAIN/README.rst [https://github.com/BLLIP/bllip-parser/blob/master/first-stage/TRAIN/README.rst] (also includes some information about the parser model file formats).

Reranker details

See second-stage/README [https://github.com/BLLIP/bllip-parser/blob/master/second-stage/README]
for an overview. second-stage/README-retrain.rst [https://github.com/BLLIP/bllip-parser/blob/master/second-stage/README-retrain.rst] details how to retrain the reranker. The
second-stage/programs/*/README files include additional notes about
different reranker components.

Other versions of the parser

We haven’t tested these and can’t support them, but they may be useful
if you’re working on other platforms or languages.

	Native Charniak parser for Windows [https://github.com/dorony/CharniakParserWindows] (doesn’t need cygwin,
no reranker)

	Rutu Mulkar-Mehta’s Windows version [http://www.rutumulkar.com/software.html]

	Djame’s French branch [https://bitbucket.org/djame/bllip-parser-fr]

	Liang Huang’s Forest Reranker [http://acl.cs.qc.edu/~lhuang/] (includes forest-dumping extensions)

References

	Eugene Charniak and Mark Johnson. “Coarse-to-fine n-best parsing and
MaxEnt discriminative reranking [http://aclweb.org/anthology/P/P05/P05-1022.pdf].” Proceedings of
the 43rd Annual Meeting on Association for Computational Linguistics.
Association for Computational Linguistics, 2005 [http://bllip.cs.brown.edu/publications/index_bib.shtml#charniak-johnson:2005:ACL].

	Eugene Charniak. “A maximum-entropy-inspired parser [http://aclweb.org/anthology/A/A00/A00-2018.pdf].” Proceedings of
the 1st North American chapter of the Association for Computational
Linguistics conference. Association for Computational Linguistics, 2000 [http://bllip.cs.brown.edu/publications/index_bib.shtml#Charniak:2000:NAACL].

Self-training:

	David McClosky, Eugene Charniak, and Mark Johnson.
“Effective Self-Training for Parsing [http://www.aclweb.org/anthology/N/N06/N06-1020.pdf].”
Proceedings of the Conference on Human Language Technology
and North American chapter of the Association for
Computational Linguistics (HLT-NAACL 2006), 2006 [http://www.aclweb.org/anthology/N/N06/N06-1020.bib].

Syntactic fusion:

	Do Kook Choe, David McClosky, and Eugene Charniak.
“Syntactic Parse Fusion [http://nlp.stanford.edu/~mcclosky/papers/choe-emnlp-2015.pdf].”
Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP 2015), 2015 [http://nlp.stanford.edu/~mcclosky/papers/choe-emnlp-2015.bib].

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	bllipparser latest documentation

Index

 Copyright .
 Created using Sphinx 1.3.1.

 first-stage/TRAIN/README.html

 Navigation

 		
 index

 		bllipparser latest documentation »

Overview

The TRAIN directory includes the programs needed to train the parser
(by reading in in treebank data and collecting the needed probabilities).
While many of the source files have the same names as those of the
parser, often they are slightly different and thus this directory must
be kept separate.

The shell script trainParser runs the various programs needed to
train the parser/language model. Run it with no arguments to get a usage
statement. For the English parser, usage is:

shell> trainParser -parser [data directory] [training corpus] [development corpus]

For the English language model, use -lm instead of -parser.
For Chinese, add the -Ch flag after -parser.

The train and dev corpora should be in Penn Treebank format (similar to
parser output). Training data is not provided with the parser.

Files created during training will be written to “data directory”.
Importantly, the training code (and parser) also expect certain static
files to be here that are not created during training. As such,
the easiest way to setup everything correctly is to make a copy of the
appropriate data directory that is distributed with the parser:

		DATA/EN: English parser (trained on PTB III WSJ corpus)

		DATA/LM: English language model

		DATA/CH: Chinese parser (trained on LDC Chinese Treebank)

and point trainParser at your copied directory.

Some additional notes on training:

		The file terms.txt must contain a list of all part-of-speech and
bracket labels found in the train and dev corpus, so you may need to
add additional labels to it for your corpora. See details of its file
format below.

		All such labels found in the dev corpus must also be present in the
train corpus.

		As coded, only the first 1000 sentences of the dev corpus are used
(i.e., if your dev corpus is longer than this, the additional sentences
will be ignored). This is intended to avoid over-fitting to the dev
corpus. To change this behavior, modify the main sentence processing
loop in trainRs.C.

		To get the effect of combining multiple corpora with different
weights, one means is to simply make multiple copies of each corpus
(e.g., train = 3 x WSJ + 2 x Brown). If you do this with the language
model, however, note you will break Knesser-Ney smoothing since it
will never see any token occurring only once.

Info on parameter files

Below is a brief and incomplete description of the parameter
files used by the parser and/or its training code (purpose, format,
interpretation, etc.). Additional info will be added based on need and
as time allows.

The following files are static and required for training:

-rw-r--r-- 1 ec fac 32 May 26 14:17 bugFix.txt
-rw-r--r-- 1 ec fac 258 May 23 16:54 featInfo.h
-rw-r--r-- 1 ec fac 411 May 23 16:54 featInfo.l
-rw-r--r-- 1 ec fac 94 May 23 16:54 featInfo.lm
-rw-r--r-- 1 ec fac 298 May 23 16:54 featInfo.m
-rw-r--r-- 1 ec fac 405 May 23 16:54 featInfo.r
-rw-r--r-- 1 ec fac 91 May 23 16:54 featInfo.rm
-rw-r--r-- 1 ec fac 65 May 23 16:54 featInfo.ru
-rw-r--r-- 1 ec fac 112 May 23 16:54 featInfo.s
-rw-r--r-- 1 ec fac 138 May 23 16:54 featInfo.t
-rw-r--r-- 1 ec fac 58 May 23 16:54 featInfo.tt
-rw-r--r-- 1 ec fac 181 May 23 16:54 featInfo.u
-rw-r--r-- 1 ec fac 553 May 23 16:54 headInfo.txt
-rw-r--r-- 1 ec fac 609 May 23 16:54 terms.txt

		bugFix.txt includes shards of sentences which are necessary to cover
very unlikely combinations which the training data do not cover:

((FRAG (NP (NN Task) (# #)) (. .)))

		featInfo.* tell the data collection programs exactly
what features to attend to (see treeHistSf.h for a long comment
block with features names / IDs). The order is consistent with the
conditioning order of the prob model in the paper:

		h: head

		u: terminal POS

		t: pre-terminal POS

		c: punctuation

		v: parent POS

		m: grandparent POS

		i: parent term

		headInfo.txt states which children categories like to be the
heads of which parent categories (note that the Chinese headfinder
has a different format).

		1 = 1st choice, 2 = 2nd choice, etc.

		ADJP JJ: if current POS is ADJP, head is right-most JJ

		terms.txt tells the parser all the pre-terminal and phrasal
categories and their type:

0: constituent types
1: closed-class, non-punctuation POS
2: open-class POS
3: sentence-final punctuation (period, exclamation/question mark)
4: comma
5: open quotation
6: close quotation
7: open/close parentheses
8: colon / semi-colon

Files created during training

endings.txt: statistics for guessing POS of unknown words by 2-letter
suffix:

* col 1: POS
* col 2: suffix
* col 3: P(suffix|POS) (e.g., all rows with POS 3 sum to 1)

pUgT.txt (“probability of unknown given text”): is also used in the
unknown word model:

* col 1: POS
* col 2: P(unknown|POS)
* col 3: P(capitalized|POS)
* col 4: P(contains hypen|POS)

*.g: (extracted statistics from training trees according to the
corresponding featInfo.* file, see below)

*.lambdas: (backoff coefficients, see below)

unitRules.txt: provides an ordering of unary production rules

Rough training procedure

Extract vocabulary (pSgT.txt), unknown word statistics
(endings.txt, pUgT.txt, nttCounts.txt), and information
about unary rules (unitRules.txt).

For each feature, run:

		rCounts - get counts of features (reads train trees, writes .ff
files)

		selFeats - prune features (reads .ff files, writes .f
files)

		iScale - normalize pruned features (reads .f files, writes
.g files)

		trainRs - tune backoff coefficients from dev data (reads dev trees,
writes .lambdas)

*.f and *.ff files are not needed for parsing and are deleted.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/comment-close.png

_static/minus.png

_static/comment.png

_static/up.png

_static/plus.png

dockerfiles/python/README.html

 Navigation

 		
 index

 		bllipparser latest documentation »

 This Docker image is based on dockerfile/ubuntu-desktop to provide a GUI desktop for running the BLLIP parser’s NLTK + X11/TK parsing shell. It starts up in CLI mode though for those who don’t want the GUI.

The home for the BLLIP parser PyPi package bllipparser is:
https://pypi.python.org/pypi/bllipparser/

Once you’ve started the Docker container with this image you should be able to just type in those commands without any further installation steps.

The home for this Dockerfile is: https://github.com/BLLIP/bllip-parser/tree/master/dockerfiles/python

The source for the BLLIP parser (including Python wrapper) used is from here: https://github.com/BLLIP/bllip-parser

I add Firefox and Lynx to the minimal desktop for web access and NumPy since some
NLTK features can use it.

Once you’ve installed Docker, starting me is just:

docker run -it --rm -p 5901:5901 bllip/bllip-parser-python

Note that the Docker Hub Registry means you don’t even need a manual download step.

Then at the prompt you can start VNC if you want graphics:

./runvnc.sh

That will prompt you for a password and start up the VNC server.

On a Mac an easy way to use the builtin VNC client is to open an OS X Terminal and type:

open vnc://192.168.59.103:5901

Or just enter the URL [[vnc://192.168.59.103:5901]] in the Safari location bar.

That (192.168.59.103) is the default VirtualBox IP address. You can display it with this command:

boot2docker ip

When you’re done using this application container, just exit from at the shell prompt:

[root@4683cabf356e:~]$ exit

Docker greatly simplifies running Linux applications and works on most any platform including
Mac and Windows.http://docs.docker.com/installation/

To run Docker on Mac or Windows, follow the instructions for installing boot2docker, which
is mostly just a few clicks to install deal, here:
http://docs.docker.com/installation/mac/
http://docs.docker.com/installation/windows/

 © Copyright .
 Created using Sphinx 1.3.1.

second-stage/README-retrain.html

 Navigation

 		
 index

 		bllipparser latest documentation »

Retraining the reranker

If you’re experimenting with new reranker features or want to build a
reranker for a different treebank, you will want to retrain the
reranker.

Retraining the reranker takes a considerable amount of time, disk
space and RAM. At Brown we use a dual Opteron machine with 16Gb RAM,
and it takes around two days (editors note: this was written in 2006,
when these numbers were a little more impressive... It shouldn’t take
this long anymore). You should be able to do it with only 8Gb RAM,
and maybe even with 4Gb RAM with an appropriately tweaked kernel (e.g.,
sysctl overcommit_memory, and a so-called 4Gb/4Gb split if you’re
using a 32-bit OS).

The time and memory you need depend on the features that the reranker
extracts and the size of the n-best tree training and development data.
You can change the features that are extracted by changing
second-stage/programs/features/features.h, and you can reduce the
size of the n-best tree data by reducing NPARSES in the Makefile
from 50 to, say, 25.

You will need to edit the Makefile in order to retrain the reranker.
First, you need to set the variable PENNWSJTREEBANK in the
Makefile to the directory that holds your version of the Penn WSJ
Treebank. For example:

PENNWSJTREEBANK=/usr/local/data/Penn3/parsed/mrg/wsj/

If you’re using cvlm-lbfgs as your estimator (the default), you’ll also
need the Boost C++ and the
libLBFGS [http://www.chokkan.org/software/liblbfgs/] library in order
to retrain the reranker. libLBFGS is available at under the MIT license.
In Ubuntu, you’ll need the liblbfgs-dev package:

shell> sudo apt-get install liblbfgs-dev

For older versions of Ubuntu, you may need to install a PPA to get
liblbfgs-dev:

shell> sudo add-apt-repository --yes ppa:ktm5j/uva-cs-ppa
shell> sudo apt-get update

Boost [http://www.boost.org/] can be obtained with the libboost-dev
package in Ubuntu:

shell> sudo apt-get install libboost-dev

While many modern Linux distributions come with the Boost C++ libraries
pre-installed, if the Boost C++ libraries are not included in your
standard libraries and headers, you will need to install them and add an
include file specification for them in your GCCFLAGS. For example,
if you have installed the Boost C++ libraries in /home/mj/C++/boost,
then your $GCCFLAGS environment variable should be something like:

shell> setenv GCCFLAGS "-march=pentium4 -mfpmath=sse -msse2 -mmmx -I /home/mj/C++/boost"

or:

shell> setenv GCCFLAGS "-march=opteron -m64 -I /home/mj/C++/boost"

Once this is set up, you retrain the reranker as follows:

shell> make reranker
shell> make nbesttrain
shell> make eval-reranker

The script train-eval-reranker.sh does all of this.

The reranker goal builds all of the programs, nbesttrain
constructs the 20 folds of n-best parses required for training, and
eval-reranker extracts features, estimates their weights and
evaluates the reranker’s performance on the development data (dev) and
the two test data sets (test1 and test2).

If you have a parallel processor, you can run 2 (or more) jobs in
parallel by running:

shell> make -j 2 nbesttrain

Currently this only helps for nbesttrain (but this is the slowest
step, so maybe this is not so bad).

The Makefile contains a number of variables that control how the
training process works. The most important of these is the VERSION
variable. You should do all of your experiments with
VERSION=nonfinal, and only run with VERSION=final once to
produce results for publication.

If VERSION is nonfinal then the reranker trains on WSJ PTB
sections 2-19, sections 20-21 are used for development, section 22 is
used as test1 and section 24 is used as test2 (this approximately
replicates the Collins 2000 setup).

If VERSION is final then the reranker trains on WSJ PTB sections
2-21, section 24 is used for development, section 22 is used as test1
and section 23 is used as test2.

The Makefile also contains variables you may want to change, such as
NPARSES, which specfies how many parses per sentence are extracted
from each sentence, and NFOLDS, which specifies how many folds
are created.

If you decide to experiment with new features or new feature weight
estimators, take a close look at the Makefile. If you change the
features please also change FEATURESNICKNAME; this way your new
features won’t over-write our existing ones. Similarly, if you change
the feature weight estimator please pick a new ESTIMATORNICKNAME and
if you change the n-best parser please pick a new
NBESTPARSERNICKNAME; this way you new n-best parses or feature
weights won’t over-write the existing ones.

To get rid of (many of) the object files produced in compilation, run:

shell> make clean

Training, especially constructing the 20 folds of n-best parses,
produces a lot of temporary files which you can remove if you want to.
To remove the temporary files used to construct the 20 fold n-best
parses, run:

shell> make nbesttrain-clean

All of the information needed by the reranker is in
second-stage/models. To remove everything except the information
needed for running the reranking parser, run:

shell> make train-clean

To clean up everything, including the data needed for running the
reranking parser, run:

shell> make real-clean

 © Copyright .
 Created using Sphinx 1.3.1.

search.html

 Navigation

 		
 index

 		bllipparser latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright .
 Created using Sphinx 1.3.1.

first-stage/README.html

 Navigation

 		
 index

 		bllipparser latest documentation »

Copyright 1999, 2000, 2001, 2005, 2006 Brown University, Providence, RI.

Licensed under the Apache License, Version 2.0 (the “License”); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

Basic Usage

The parser (found in the subdirectory PARSE) expects sentences
delimited by <s> ... </s>, and outputs the parsed versions in
Penn treebank style. The <s> and </s> must be separated by
spaces from all other text. So if the input is:

<s> (``He'll work at the factory.'') </s>

the output will be (to stdout):

(S1 (PRN (-LRB- -LRB-) (S (`` ``) (NP (PRP He)) (VP (MD 'll) (VP (VB work) (PP (IN at) (NP (DT the) (NN factory))))) (. .) ('' '')) (-RRB- -RRB-)))

If you want to make it slightly easier for humans to read, use the
command line argument -P (pretty print), in which case you will get:

(S1 (PRN (-LRB- -LRB-)
 (S (`` ``)
 (NP (PRP He))
 (VP (MD 'll)
 (VP (VB work) (PP (IN at) (NP (DT the) (NN factory)))))
 (. .)
 ('' ''))
 (-RRB- -RRB-)))

The parser will take input from either stdin, or, if given the name
of a file, from that file. So in the latter case the call to the parser
would be:

shell> parseIt /path/to/model/dir/ /path/to/file/with/sentences

For example:

shell> parseIt ../DATA/EN/ input-sentences.sgml

(Note that as the parser is currently distributed with three separate
DATA directories, one each for English, Chinese, and English
Language Modeling. The distributed parsing model is trained on an
AUX-ified version of Wall Street Journal. More models (including
a non-AUX-ified version) can be obtained with the ModelFetcher
module in the Python library.)

As indicated above, the parser will first tokenize the input. If you do
not want to to tokenize (for some reason you are handing it pretokenized
input, as you would do if you were testing it’s performance on the
treebank), give it a -K option and pass space separated tokens:

<s> (`` He 'll work at the factory . '') </s>

Compilation instructions

The easiest way is to run make in the top-level Makefile which
will build the whole system. To just build the parser, run make
PARSE. To only build the training tools for the first-stage parser,
run make TRAIN.

n-best Parsing

The parser can produce n-best parses. So if you want the 50 highest
scoring parses rather than just the highest scoring one, just add -N50
to the command line.

In n-best mode the output format is slightly different:

number-of-parses sentence-indicator-string
logProb(parse1)
parse1

logProb(parse2)
parse2

etc.

The sentence indicator string will typically just a sentence number.
However, if the input to the parser is of the form (with this exact
spacing):

<s sentence-id > ... </s>

then the sentence-id provided will be used instead. This is useful
if, e.g., you want to know where article boundaries are.

Other options

The -S flag tells the parser to remain silent when it cannot parse
a sentence (it just goes on to the next one).

The parser can now parse Chinese. It requires that the
Chinese characters already be grouped into words. Assuming you
have trained on the Chinese Treebank from LDC (see the README [https://github.com/BLLIP/bllip-parser/blob/master/first-stage/TRAIN/README.rst]
for the TRAIN programs), you tell the parser to be expecting Chinese
by giving it the command line option -LCh. (The default is English,
which is also be specified by -LEn.) The files you need to train
Chinese are in DATA/CH/.

By default, the parser will skip any sentence consisting of more 100
tokens. To change this to 200 you give it the command line argument
-l200.

The parser is set to be case sensitive. To make it case insensitive
add the command line flag -C.

Currently there are various array sizes that make 400 the absolute
maximum sentence length. To allow for longer sentences change (in
Feature.h):

#define MAXSENTLEN 400

Similarly to allow for a larger dictionary of words from training,
increase:

#define MAXNUMWORDS 500000

To see debugging information give it the on-line argument -d<number>
where the <number> is > 10. As the numbers get larger, the verbosity
of the information increases.

Training

The subdirectory TRAIN contains the programs used to collect
the statistics the parser requires from treebank data. As the
parser comes with the statistics it needs you will only need this
if you want to try experiments with the parser on more (or less,
or different) treebank data. For more information see the README [https://github.com/BLLIP/bllip-parser/blob/master/first-stage/TRAIN/README.rst]
file in TRAIN.

Language Modeling

To use the parser as the language model described in Charniak (ACL 2001)
you must first retrain the data using the settings found in DATA/LM/.

Then give parseIt a -M command line argument. If the data
is from speech, and thus all one case, also use the case-insensitive
(-C) flag.

The output in -M mode is of the form:

log-grammar-probability log-trigram-probability log-mixed-probability
parse

Again, if the data is from speech and has a limited vocabulary, it will
often be the case that the parser will have a very difficult time finding
a parse because of incorrect words (or, in simulated speech output, the
presence of “unk” the unknown word replacement), and there will be many
parses with equally bad probabilities. In such cases the pruning that
keeps memory in bounds for 50-best parsing fails. So just use 1-best,
or maybe 10-best.

Faster Parsing

The default speed/accuracy setting should give you the results in the
published papers. It is, however, easy to get faster parsing at the
expense of some accuracy. So a command line argument of -T50
costs you about a percent of parsing accuracy, but rather than 1.4
sentences/second [editor’s note: your mileage may vary] you will get
better than 6 sentences/second. (The default is -T210.)

Multi-threaded version

[Update 2013] Using more than one thread is not currently recommended
as there appear to be thread safety issues.

parseIt is multithreaded. It currently defaults to using a single
thread. To change this, use the command line argument, -t4 to have
it use, e,g, 4 threads. To change the maximum number of threads, change
the following line in Features.h and recompile parseIt:

#define MAXNUMTHREADS [maximum number of threads]

The original non-threaded parseIt is available as oparseIt
(has fewer features/bugfixes than parseIt). However, parseIt with
a single thread should be safe to run.

evalTree

evalTree takes Penn Treebank parse trees from stdin, and outputs
to stdout:

sentence-number log2(parse-tree-probability)

for each tree, one per line. evalTree can be run using the following:

shell> evalTree /path/to/model/dir/

If the tree is assigned zero probability or the parse otherwise fails,
it returns 0 for the log2 probability. In some cases, this may happen
less often if the n-best list size is expanded.

If the sentence is parsable with the model, evalTree now returns
the parser’s log prob correctly 99.9% of the time (this used to be
about 87%-95%). Due to quirks in the parsing model, the remaining 0.1%
is both hard to detect or fix.

Parsing from tagged input

If you have tags from an external part-of-speech tagger or lexicon,
you can now strongly encourage the parser to use these tags. This can
now be done using a command such as the following:

shell> parseIt -K -Einput.tags /path/to/model/dir/ input.sgml

where input.sgml looks something like this:

<s> This is a test sentence . </s>

and input.tags looks something like this:

This DT
is VBZ
a DT
test NN
sentence NN
. .

Each token is given a list of zero or more tags and sentences are
separated by --- (three hyphens). Tokens and tags are whitespace
delimited. If a token is given zero tags, the standard tagging mechanism
will be employed for tagging that token. If a token is given multiple
tags, they will each be considered.

Note that the tokenization must match exactly between these files (tokens
are space-separated in input.sgml). To ensure that tokenization
matches, you should pretokenize your input and supply the -K flag.

Frequently confusing errors

		Parser provides no output at all:

This is most likely caused by not having spaces around the <s>
and </s> brackets, i.e.,:

<s>This is a test sentence.</s>

instead of:

<s> This is a test sentence. </s>

		When retraining: Couldn't find term: _____
pSgT: InputTree.C:206: InputTree* InputTree::newParse(std::istream&,
int&, InputTree*): Assertion `Term::get(trm)' failed.

This means the training data contains an unknown term (phrasal
or part of speech type). You’ll need to add the appropriate
entry to terms.txt in the model you’re training. See the
README [https://github.com/BLLIP/bllip-parser/blob/master/first-stage/TRAIN/README.rst] in TRAIN for more details.

If you’re still stuck, check the other
README files then consider asking StackOverflow [http://stackoverflow.com/tags/charniak-parser/info] or filing a bug [https://github.com/BLLIP/bllip-parser/issues].

 © Copyright .
 Created using Sphinx 1.3.1.

CONTRIBUTING.html

 Navigation

 		
 index

 		bllipparser latest documentation »

Contributing to BLLIP Parser

We love pull requests from everyone. By participating in this project,
you agree to abide by the thoughtbot code of
conduct [https://thoughtbot.com/open-source-code-of-conduct].

Getting involved

If you’re looking for ideas, see the list of known
issues [https://github.com/BLLIP/bllip-parser/issues],
specifically those marked
“help-wanted [https://github.com/BLLIP/bllip-parser/labels/help-wanted].”

Submitting changes

		Sign the Contributor License
Agreement [https://www.dropbox.com/s/inp9y16jplesy5d/cla-individual-bllip-parser.rtf?dl=1].
Email us if you have any questions about this.

		Fork, then clone the repo:

git clone git@github.com:your-username/bllip-parser.git

		Make your changes (please include an update to CONTRIBUTORS.rst)

		Test your changes with flake8 and
nosetests (you will need the flake8 and nose packages.
See details in the release
checklist [https://github.com/BLLIP/bllip-parser/blob/master/CHECKLIST.txt]).
If you add new Python code, please add appropriate testing code as well in
python/tests/.

		Push to your fork and submit a
pull request [https://github.com/BLLIP/bllip-parser/compare/].
Travis CI [https://travis-ci.org/BLLIP/bllip-parser/pull_requests]
will
test [https://github.com/BLLIP/bllip-parser/blob/master/.travis.yml]
your changes ensuring that the C and Python interfaces build and run the
test suite for the Python code.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/comment-bright.png

README-python.html

 Navigation

 		
 index

 		bllipparser latest documentation »

 [image: https://travis-ci.org/BLLIP/bllip-parser.png?branch=master]
 [https://travis-ci.org/BLLIP/bllip-parser]The BLLIP parser (also known as the Charniak-Johnson parser or
Brown Reranking Parser) is described in the paper Charniak
and Johnson (Association of Computational Linguistics, 2005) [http://aclweb.org/anthology/P/P05/P05-1022.pdf]. This package
provides the BLLIP parser runtime along with a Python interface. Note
that it does not come with any parsing models but includes a model
downloader. The primary maintenance for the parser takes place at
GitHub [http://github.com/BLLIP/bllip-parser].

We request acknowledgement in any publications that make use of this
software and any code derived from this software. Please report the
release date of the software that you are using, as this will enable
others to compare their results to yours.

Quickstart

Install bllipparser with pip [https://pip.pypa.io/en/stable/installing.html#install-pip]:

shell% pip install --user bllipparser

or (if you have sudo access):

shell% sudo pip install bllipparser

To fetch a parsing model and start parsing:

>>> from bllipparser import RerankingParser
>>> rrp = RerankingParser.fetch_and_load('WSJ-PTB3', verbose=True)
[downloads, installs, and loads the model]
>>> rrp.simple_parse("It's that easy.")
"(S1 (S (NP (PRP It)) (VP (VBZ 's) (ADJP (RB that) (JJ easy))) (. .)))"

The first time this is called, this will download and install a parsing
model trained from Wall Street Journal in ~/.local/share/bllipparser
(it will only be loaded on subsequent calls).

For a list of installable parsing models, run:

shell% python -mbllipparser.ModelFetcher -l

See BLLIP Parser models [https://github.com/BLLIP/bllip-parser/blob/master/MODELS.rst] for
information about picking the best parsing model for your text.

Basic usage

The main class in bllipparser is the RerankingParser parser class
which provides an interface to the first stage parser and the second stage
reranker. The easiest way to construct a RerankingParser object is
with the fetch_and_load (see above) or from_unified_model_dir
class methods. A unified model is a directory that contains two
subdirectories: parser/ and reranker/, each with the respective
model files:

>>> from bllipparser import RerankingParser
>>> rrp = RerankingParser.from_unified_model_dir('/path/to/model/')

If you only want the most likely parse of a sentence in Penn Treebank
format, use the simple_parse() method:

>>> rrp.simple_parse('This is simple.')
'(S1 (S (NP (DT This)) (VP (VBZ is) (ADJP (JJ simple))) (. .)))'

If you want more information about the parse, you’ll want to use the
parse() method which returns an NBestList object. The parser
produces an n-best list of the n most likely parses of the sentence
(default: n=50). Typically you only want the top parse, but the others
are available as well:

>>> nbest_list = rrp.parse('This is a sentence.')

To get information about the top parse (note that the ptb_parse
property is a Tree object, described in more detail later):

>>> print repr(nbest_list[0])
ScoredParse('(S1 (S (NP (DT This)) (VP (VBZ is) (NP (DT a) (NN sentence))) (. .)))', parser_score=-29.620656470412328, reranker_score=-7.13760513405013)
>>> print nbest_list[0].ptb_parse
(S1 (S (NP (DT This)) (VP (VBZ is) (NP (DT a) (NN sentence))) (. .)))
>>> print nbest_list[0].parser_score
-29.6206564704
>>> print nbest_list[0].reranker_score
-7.13760513405
>>> print len(nbest_list)
50

You can perform syntactic fusion with the fuse() method. This
combines the parses in the n-best list into a single Tree (which
may be a parse already present in the n-best list or a novel one):

>>> print nbest_list.fuse()
(S1 (S (NP (DT This)) (VP (VBZ is) (NP (DT a) (NN sentence))) (. .)))

If you have the PyStanfordDependencies [https://pypi.python.org/pypi/PyStanfordDependencies/] package,
you can parse straight to Stanford Dependencies [http://nlp.stanford.edu/software/stanford-dependencies.shtml]:

>>> tokens = nbest_list[0].ptb_parse.sd_tokens()
>>> for token in tokens:
... print token
...
Token(index=1, form=u'This', cpos=u'DT', pos=u'DT', head=4, deprel=u'nsubj')
Token(index=2, form=u'is', cpos=u'VBZ', pos=u'VBZ', head=4, deprel=u'cop')
Token(index=3, form=u'a', cpos=u'DT', pos=u'DT', head=4, deprel=u'det')
Token(index=4, form=u'sentence', cpos=u'NN', pos=u'NN', head=0, deprel=u'root')
Token(index=5, form=u'.', cpos=u'.', pos=u'.', head=4, deprel=u'punct')

This will attempt to use a default converter but see docs for how to
customize dependency conversion (or if you run into Java version issues).

If you have an existing tokenizer, tokenization can also be specified
by passing a list of strings:

>>> nbest_list = rrp.parse(['This', 'is', 'a', 'pretokenized', 'sentence', '.'])

If you’d like to disable the reranker (lowers accuracy, so not normally
done), set rerank=False:

>>> nbest_list = rrp.parse('Parser only!', rerank=False)

You can also parse text with existing POS tags (these act as soft
constraints). In this example, token 0 (‘Time’) should have tag VB and
token 1 (‘flies’) should have tag NNS:

>>> rrp.parse_tagged(['Time', 'flies'], possible_tags={0 : 'VB', 1 : 'NNS'})[0]
ScoredParse('(S1 (NP (VB Time) (NNS flies)))', parser_score=-54.05083561918019, reranker_score=-15.079632500107973)

You don’t need to specify a tag for all words: Here, token 0 (‘Time’) should
have tag VB and token 1 (‘flies’) is unconstrained:

>>> rrp.parse_tagged(['Time', 'flies'], possible_tags={0 : 'VB'})[0]
ScoredParse('(S1 (S (VP (VB Time) (NP (VBZ flies)))))', parser_score=-54.3497715 5750189, reranker_score=-16.681734375725263)

You can specify multiple tags for each token. When you do this, the
tags for a token will be used in decreasing priority. token 0 (‘Time’)
should have tag VB, JJ, or NN and token 1 (‘flies’) is unconstrained:

>>> rrp.parse_tagged(['Time', 'flies'], possible_tags={0 : ['VB', 'JJ', 'NN']})[0]
ScoredParse('(S1 (NP (NN Time) (VBZ flies)))', parser_score=-42.9961920777843, reranker_score=-12.57069545767032)

If you have labeled span constraints, you can require that all parses follow them with parse_constrained. The following requires that the parse contain
a VP covering left to Falklands:

>>> rrp.parse_constrained('British left waffles on Falklands .'.split(),
... constraints={(1, 5) : ['VP']})[0]
ScoredParse('(S1 (S (NP (NNPS British)) (VP (VBD left) (NP (NNS waffles)) (PP (IN on) (NP (NNP Falklands)))) (. .)))', parser_score=-93.73622897543436, reranker_score=-25.60347808581542)

To force British left to be a noun phrase:

>> rrp.parse_constrained('British left waffles on Falklands .'.split(),
... constraints={(0, 2): ['NP']})[0]
ScoredParse('(S1 (S (NP (JJ British) (NN left)) (VP (VBZ waffles) (PP (IN on) (NP (NNP Falklands)))) (. .)))', parser_score=-89.59447837562135, reranker_score=-25.480236524298025)

There are many parser options which can be adjusted (though the defaults
should work well for most cases) with set_parser_options. This
will change the size of the n-best list and pick the defaults for all
other options. It returns a dictionary of the current options:

>>> rrp.set_parser_options(nbest=10)
{'language': 'En', 'case_insensitive': False, 'debug': 0, 'small_corpus': True, 'overparsing': 21, 'smooth_pos': 0, 'nbest': 10}
>>> nbest_list = rrp.parse('The list is smaller now.', rerank=False)
>>> len(nbest_list)
10

The parser can also be used as a tagger:

>>> rrp.tag("Time flies while you're having fun.")
[('Time', 'NNP'), ('flies', 'VBZ'), ('while', 'IN'), ('you', 'PRP'), ("'re", 'VBP'), ('having', 'VBG'), ('fun', 'NN'), ('.', '.')]

Use this if all you want is a Penn Treebank-style tokenizer:

>>> from bllipparser import tokenize
>>> tokenize("Tokenize this sentence, please.")
['Tokenize', 'this', 'sentence', ',', 'please', '.']

Parsing shell

BLLIP Parser includes an interactive shell for visualizing parses:

shell% python -mbllipparser model

Model can be a unified parsing model or first-stage parsing model on
disk or the name of a model known by ModelFetcher, in which case it will
be downloaded and installed if it hasn’t been already. If no model is
specified, it will list installable parsing models.

Once in the shell, type a sentence to have the parser parse it:

bllip> I saw the astronomer with the telescope.
Tokens: I saw the astronomer with the telescope .

Parser's parse:
(S1 (S (NP (PRP I))
 (VP (VBD saw)
 (NP (NP (DT the) (NN astronomer))
 (PP (IN with) (NP (DT the) (NN telescope)))))
 (. .)))

Reranker's parse: (parser index 2)
(S1 (S (NP (PRP I))
 (VP (VBD saw)
 (NP (DT the) (NN astronomer))
 (PP (IN with) (NP (DT the) (NN telescope))))
 (. .)))

If you have nltk installed, you can use its tree visualization to
see the output:

bllip> visual Show me this parse.
Tokens: Show me this parse .

[graphical display of the parse appears]

If you have PyStanfordDependencies installed, you can parse straight
to Stanford Dependencies:

bllip> sdparse Now with Stanford Dependencies integration!
Tokens: Now with Stanford Dependencies integration !

Parser and reranker:
 Now [root]
 +-- with [prep]
 | +-- integration [pobj]
 | +-- Stanford [nn]
 | +-- Dependencies [nn]
 +-- ! [punct]

The asciitree package is required to visualize Stanford Dependencies
as a tree. If it is not available, the dependencies will be shown in
CoNLL-X format.

There is more detailed help inside the shell under the help command.

The Tree class

The parser provides a simple Tree class which provides information about
Penn Treebank-style trees:

>>> tree = bllipparser.Tree('(S1 (S (NP (DT This)) (VP (VBZ is) (NP (DT a) (ADJP (RB fairly) (JJ simple)) (NN parse) (NN tree))) (. .)))')
>>> print tree
(S1 (S (NP (DT This)) (VP (VBZ is) (NP (DT a) (ADJP (RB fairly) (JJ simple)) (NN parse) (NN tree))) (. .)))

pretty_string() provides a line-wrapped stringification:

>>> print tree.pretty_string()
(S1 (S (NP (DT This))
 (VP (VBZ is)
 (NP (DT a) (ADJP (RB fairly) (JJ simple)) (NN parse) (NN tree)))
 (. .)))

You can obtain the tokens and tags of the tree:

>>> print tree.tokens()
('This', 'is', 'a', 'fairly', 'simple', 'parse', 'tree', '.')
>>> print tree.tags()
('DT', 'VBZ', 'DT', 'RB', 'JJ', 'NN', 'NN', '.')
>>> print tree.tokens_and_tags()
[('This', 'DT'), ('is', 'VBZ'), ('a', 'DT'), ('fairly', 'RB'), ('simple', 'JJ'), ('parse', 'NN'), ('tree', 'NN'), ('.', '.')]

Or get information about the labeled spans in the tree:

>>> print tree.span()
(0, 8)
>>> print tree.label
S1

You can navigate within the trees and more:

>>> tree.subtrees()
[Tree('(S (NP (DT This)) (VP (VBZ is) (NP (DT a) (ADJP (RB fairly) (JJ simple)) (NN parse) (NN tree))) (. .))')]
>>> tree[0] # first subtree
Tree('(S (NP (DT This)) (VP (VBZ is) (NP (DT a) (ADJP (RB fairly) (JJ simple)) (NN parse) (NN tree))) (. .))')
>>> tree[0].label
'S'
>>> tree[0][0] # first subtree of first subtree
Tree('(NP (DT This))')
>>> tree[0][0].label
'NP'
>>> tree[0][0].span() # [start, end) indices for the span
(0, 1)
>>> tree[0][0].tags() # tags within this span
('DT',)
>>> tree[0][0].tokens() # tuple of all tokens in this span
('This',)
>>> tree[0][0][0]
Tree('(DT This)')
>>> tree[0][0][0].token
'This'
>>> tree[0][0][0].label
'DT'
>>> tree[0][0][0].is_preterminal()
True
>>> len(tree[0]) # number of subtrees
3
>>> for subtree in tree[0]: # iteration works
... print subtree
...
(NP (DT This))
(VP (VBZ is) (NP (DT a) (ADJP (RB fairly) (JJ simple)) (NN parse) (NN tree)))
(. .)
>>> for subtree in tree.all_subtrees(): # all subtrees (recursive)
... print subtree.is_preterminal(), subtree
...
False (S1 (S (NP (DT This)) (VP (VBZ is) (NP (DT a) (ADJP (RB fairly) (JJ simple)) (NN parse) (NN tree))) (. .)))
False (S (NP (DT This)) (VP (VBZ is) (NP (DT a) (ADJP (RB fairly) (JJ simple)) (NN parse) (NN tree))) (. .))
False (NP (DT This))
True (DT This)
False (VP (VBZ is) (NP (DT a) (ADJP (RB fairly) (JJ simple)) (NN parse) (NN tree)))
True (VBZ is)
False (NP (DT a) (ADJP (RB fairly) (JJ simple)) (NN parse) (NN tree))
True (DT a)
False (ADJP (RB fairly) (JJ simple))
True (RB fairly)
True (JJ simple)
True (NN parse)
True (NN tree)
True (. .)

More examples and advanced features

See the documentation and the examples [https://github.com/BLLIP/bllip-parser/tree/master/python/examples]
directory in the repository.

References

Parser and reranker:

		Eugene Charniak and Mark Johnson. “Coarse-to-fine n-best parsing and
MaxEnt discriminative reranking [http://aclweb.org/anthology/P/P05/P05-1022.pdf].” Proceedings of
the 43rd Annual Meeting on Association for Computational Linguistics.
Association for Computational Linguistics, 2005 [http://bllip.cs.brown.edu/publications/index_bib.shtml#charniak-johnson:2005:ACL].

		Eugene Charniak. “A maximum-entropy-inspired parser [http://aclweb.org/anthology//A/A00/A00-2018.pdf].” Proceedings of
the 1st North American chapter of the Association for Computational
Linguistics conference. Association for Computational Linguistics, 2000 [http://bllip.cs.brown.edu/publications/index_bib.shtml#Charniak:2000:NAACL].

Self-trained parsing models:

		David McClosky, Eugene Charniak, and Mark Johnson.
“Effective Self-Training for Parsing [http://www.aclweb.org/anthology/N/N06/N06-1020.pdf].”
Proceedings of the Conference on Human Language Technology
and North American chapter of the Association for
Computational Linguistics (HLT-NAACL 2006), 2006 [http://www.aclweb.org/anthology/N/N06/N06-1020.bib].

Syntactic fusion:

		Do Kook Choe, David McClosky, and Eugene Charniak.
“Syntactic Parse Fusion [http://nlp.stanford.edu/~mcclosky/papers/choe-emnlp-2015.pdf].”
Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP 2015), 2015 [http://nlp.stanford.edu/~mcclosky/papers/choe-emnlp-2015.bib].

Release highlights

		2015.08.18: New APIs for easier use, integrated ModelFetcher with ParsingShell, automatically organize models

		2015.08.15: Add syntactic fusion, sigeval, and new self-trained model

		2015.07.23: Fix build error, other build system improvements

		2015.07.08: Constrained parsing, reranker can now be built with optimization (30% faster), other API additions

		2015.01.11: Improved PyStanfordDependencies support, memory leak fixed, API additions, bugfixes

		2014.08.29: Add Tree class, RerankerFeatureCorpus module, other API updates

		2014.02.09: Add ModelFetcher, RerankingParser improvements

		2013.10.16: distutils support, initial PyPI release

 © Copyright .
 Created using Sphinx 1.3.1.

_static/down-pressed.png

_static/down.png

CONTRIBUTORS.html

 Navigation

 		
 index

 		bllipparser latest documentation »

BLLIP Parser contributors

Creators

		Eugene Charniak [http://cs.brown.edu/~ec/] (parser)

		Mark Johnson [http://web.science.mq.edu.au/~mjohnson/] (reranker)

Maintainer

		David McClosky [https://github.com/dmcc]

Contributors

		Do Kook Choe [https://cs.brown.edu/people/dc65/home.html]

		Micha Elsner [http://www.ling.ohio-state.edu/~melsner/]

		William P. Headden III [https://github.com/headdenw]

		Kristy Hollingshead [http://www.ihmc.us/groups/khollingshead/]

		Matthew Lease [https://www.ischool.utexas.edu/~ml/]

		Vlad Niculae [https://github.com/vene]

		Ben Swanson [https://github.com/chonger]

		Jenine Turner-Trauring

		Jim White [https://github.com/jimwhite]

 © Copyright .
 Created using Sphinx 1.3.1.

_static/file.png

MODELS.html

 Navigation

 		
 index

 		bllipparser latest documentation »

Introduction to BLLIP Parser models

There are several available parsing models for BLLIP Parser. This
document is designed to help you determine which one will perform best
for your task. Each one of the parsing models discussed includes a pair
of Charniak parser and Johnson reranker models designed to work together
(this is called a unified parsing model).

Finding parsing models

If you don’t already have the Python bllipparser module, run the
following in your shell:

shell% pip install --user bllipparser

Or, if you can run sudo:

shell% sudo pip install bllipparser

Once you have bllipparser, you can use the ModelFetcher
functionality to list and download parsing models. To list parsing models,
run the following in your shell:

shell% python -mbllipparser.ModelFetcher -l
8 known unified parsing models: [uncompressed size]
GENIA+PubMed:
 Self-trained model on GENIA treebank and approx. 200k sentences
 from PubMed [152MB]
OntoNotes-WSJ:
 WSJ portion of OntoNotes [61MB]
SANCL2012-Uniform:
 Self-trained model on OntoNotes-WSJ and the Google Web Treebank
 [890MB]
WSJ:
 Wall Street Journal corpus from Penn Treebank, version 2
 ("AnyDomain" version) [52MB]
WSJ+Gigaword:
 Self-trained model on PTB2-WSJ and approx. two million sentences
 from Gigaword (deprecated) [473MB]
WSJ+Gigaword-v2:
 Improved self-trained model on PTB WSJ and two million sentences
 from Gigaword [435MB]
WSJ-PTB3:
 Wall Street Journal corpus from Penn Treebank, version 3 [55MB]
WSJ-with-AUX:
 Wall Street Journal corpus from Penn Treebank, version 2 (AUXified
 version, deprecated) [55MB]

This list may change as new parsing models are added to the list.
To download and install WSJ+Gigaword-v2 (as an example), run the
following in your shell:

% python -mbllipparser.ModelFetcher -i WSJ+Gigaword-v2

Parsing models

Depending on the text that you’d like to parse, there are different
optimal parsing models. Here are the current recommendations:

		News text: WSJ+Gigaword-v2

		Web text: SANCL2012-Uniform

		Biomedical (PubMed) text: GENIA+PubMed

		WSJ section 23 evaluations to replicate papers: For purely supervised
parser or parser/reranker results, use either WSJ-PTB3
(for Penn Treebank WSJ) or OntoNotes-WSJ (for the OntoNotes version
of WSJ). Use WSJ+Gigaword to replicate self-training results, though
WSJ+Gigaword-v2 performs slightly better.

		Everything else: In general, it’s probably best to use
SANCL2012-Uniform or WSJ+Gigaword-v2 depending on how
well-formed your text is (SANCL2012-Uniform for more informal
web/email text).

 © Copyright .
 Created using Sphinx 1.3.1.

_static/up-pressed.png

_static/ajax-loader.gif

